Monitoring often requires insight into the monitored system as well as concrete specifications of expected behavior. More and more systems, however, provide information about their inner procedures by emitting provenance information in a W3C-standardized graph format. In this work, we present an approach to monitor such provenance data for anomalous behavior by performing spectral graph analysis on slices of the constructed provenance graph and by comparing the characteristics of each slice with those of a sliding window over recently seen slices. We argue that this approach not only simplifies the monitoring of heterogeneous distributed systems, but also enables applying a host of well-studied techniques to monitor such systems.